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Abstract. Non-negative matrix factorization (NMF) is a dimension-reduction 

technique based on a low-rank approximation of the feature space. Unfortunate-

ly, most existing NMF based methods are not ready for encoding higher-order 

data information and ignore the local geometric structure contained in the data 

set. Additionally, the previous classification approaches which the classification 

and matrix factorization steps are separated independently. The first one per-

forms data transformation and the second one classifies the transformed data us-

ing classification methods as support vector machine (SVM). In this paper, 

therefore, we joint SVM and constrained NMF into one by uniting maximum 

margin classification constraints into the constrained NMF optimization. Exper-

imental results on the benchmark image datasets demonstrate the effectiveness 

of the proposed method.  

Keywords: face recognition, graph regularization, nonnegative matrix factori-

zation, support vector machine, spatial constrains 

1 Introduction 

The face plays an essential role in carrying identity of individuals. Face recognition 

has been broadly studied by several authors over the last thirty years [1][2][9]. As a 

consequence great progress has been achieved toward developing computer vision 

algorithms that can recognize individuals based on their facial images in a similar way 

that human beings do, and leading this technology to reliable personal identification 

systems. 

Face recognition approaches on still images can be broadly grouped into geometric 

and template matching techniques. One way to represent the high dimensional face 

image data is to use Non-negative Matrix Factorization (NMF) algorithms. NMF aims 

to find intuitive basis such that training examples can be faithfully reconstructed using 

linear combination of basis images which are restricted to non-negative values.  

However, due to NMF pays no attention to class labels of the face images, there-

fore the representative characteristics of the data may not be optimal for classification 

task. And most existing NMF based methods are not ready for encoding higher-order 

data information and ignore the local geometric structure contained in the data set. 
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In this paper, we introduce a novel algorithm that solves two main challenging 

problems in traditional NMF methods. Our main contribution in this work is to intro-

duce a robust algorithm which is called as Max-margin Non-negative Matrix Factori-

zation via Spatial and Graph Regularization (MNMF_SGR). We also apply the algo-

rithm for a lower dimensional representation of face images that can be used for both 

classification and recognition tasks. 

2 Related Works 

2.1 Non-negative Matrix Factorization 

NMF is a part-based subspace learning algorithm, and it gained its popularity after the 

work of Lee and Seung published [3]. Given a non-negative data matrix   
  

   where every entry in     and a positive integer            , find two 

non-negative matrices   and  , where                     is the basis vec-

tors and                     is coefficient vectors, that minimizes the follow-

ing objective function: 
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where ‖ ‖  is Frobenius norm of a matrix, and the product    is the non-negative 

matrix factorization approximation of   of rank at most  .  

2.2 NMF Variants 

Spatial Non-negative Matrix Factorization (SpaNMF)  

The structured sparse NMF has been recently proposed in order to learn structured 

basis images. In 2012, Zheng et al.[4] produced a structured sparsity learning as au-

tomatically as possible. It is a pixel dispersion penalty, which effectively describes the 

spatial dispersion of pixels in an image without using any manually predefined struc-

tured patterns as constraints.  

The Pixel Dispersion Penalty.  

Let           be the indicator vector such that  
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where [x,y] is a coordinate vector in an image and b is the height of an image. Note 

that   
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and    is Pixel Dispersion Penalty. 

    ∑ ∑ ∑ ∑                            
  

    
 
    

 
   

 
    (4) 

In order to extract non-negative structured local patterns of the data, we are now 

incorporating the pixel dispersion penalty to develop a new penalized NMF-based 

matrix factorization as follows: 
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where         and c0 is a simple positive constant bound parameter. 

Graph Non-negative Matrix Factorization (GNMF) 

Recent studies in spectral graph theory and manifold learning theory [5][6] have 

demonstrated that the local geometric structure can be effectively modeled through a 

nearest neighbor graph on a scatter of data points. Given a data matrix         

    , GNMF aims to find two non-negative matrix              and V 
          . We can also use the distance measure as follow: 
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where the regularization parameter     controls the smoothness of the new rep-

resentation. 

Max-margin Non-negative Matrix Factorization (MNMF)[7]  

Let           
 denote a set of data vectors and their corresponding labels, 

where                . This aim is to determine a bases matrix U that can be 

used to extract features that are optimal under a max-margin classification criterion. 

This is accomplished by imposing constraints on the feature vectors derived from U. 

The optimization problem is given by 

              
 ‖    ‖ 

  
 

 
     ∑   

 
     (7) 

        
                             

where                    is the lack variable vector,   and C are scalars. 

3 Proposed Method 

In this section, we introduce our unified objective function, and then we build the 

multiplicative update solution by the optimized gradient method. Finally, we describe 

how the system use this algorithm to perform the tasks we expect it to do. 
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Fig. 1. The flow chart of MNMF_SGR based image reconstruction for face recognition 

3.1 Objective Function 

The unified objective function is constructed by jointing the data reconstruction ob-

jective function in (5) by (6) and (7): 
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‖ ‖ 

   ∑    
 
                          (8) 

                      
                   

 All variables are divided into three terms: the coefficient matrix (V), the basis ma-

trix (U) and variables about max-margin projection (w, b, ε). Where L is called graph 

Laplacian, E is called the dispersion kernel matrix. 

3.2 Update the Projection Vector and Slack Variables 

When the coefficient matrix and the basis matrix are fixed, MMNMF_MR optimiza-

tion problem changes into the standard binary soft-margin SVM classification 
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 The hyper-plane parameters ,   and slack variable vector   are obtained using 

an off-the-shelf SVM classifier. 

3.3 Update the Coefficient Matrix 

When other variables are fixed, the optimization of the coefficient matrix is trans-

formed to quadratic programming: 

     ‖    ‖ 
                         

                    (10) 
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The Lagrangian of above objective function is 

                                       

 ∑       
            

 

   

 

where     are Lagrangian multipliers, specifically   is Lagrangian multipliers vec-

tor. Under the Karush-Kuhn-Tucker (KKT) conditions, we get 
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Transform (11) equation into a matrix form 
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where 1 is a unit vector whose size is the same as v, 0 is the zero vector. We can de-

rive v by solving (3.7) equation. 

3.4 Update the Basis Matrix 

When other variables are fixed, the model is transformed to a non-negative matrix 

factorization: 

       
 

‖    ‖ 
                     (13) 

Because of the non-negative constraints, we use gradient descent methods to solve 

this problem.  The gradient of equation (13) is 

                    

3.5 Classification 

During testing, the input test vector xtest  is projected onto the basis matrix U to obtain 

the feature vector,              . The feature vector is used by the max-margin 

classifier which predicts the class                       where w, b, U are com-

puted during training. 

4 Experimental Results 

In this section, proposed method compared against several popular subspace learning 

algorithms, specifically the unsupervised methods (NMF, Spatial NMF and Graph 
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NMF). We also compared with the supervised algorithm (Max-margin NMF [7] and 

Max-margin nonnegative matrix factorization via factor analysis [8]). 

4.1 Database 

─ YaleA Database [10]: It contains 165 gray-scale images in GIF format of 15 indi-

viduals. There are 11 images per subject including center-light, w/glasses, happy, 

left-light, w/no glasses, normal, right-light, sad, sleepy, surprised, and wink. 

─ ORL Face Database [11]: There are 10 images of each 40 different subjects. Some 

of the images were taken at different times (e.g., open and closed eyes, smiling and 

not smiling, with glasses and without glasses). 

4.2 Preprocessing 

The image region where the face can be found is then cropped and only this region is 

used in the face recognition process. The face is cropped from the whole image man-

ually depending on the position of the left and right eyes as well as the mouth. After 

cropping the face from the original image, the new images are normalized to a stand-

ard size of 16 × 16 pixels. 

4.3 Experimental Settings 

We first evaluated the classification accuracy was carried out on face recognition for 

the well-known face data sets, namely YaleA and ORL datasets. After that, we re-

ported the classification under partial occlusion on both data sets. 

  We repeated the following procedure for 10 times. Each time we randomly se-

lected two-thirds of number of image per individual and labeled them. All the other 

images were unlabeled and used as the testing set. All algorithms were initialized with 

20 random U and V matrices, each of them were trained for 20 iterations and the one 

with the minimum objective function value was further trained for 1000 iterations. 

The dimensionality reduction process with NMF, SpaNMF, GNMF and Semi-

NMF algorithms, the trained coefficient matrix is ready to be used for classifying a 

testing face image. Then we use SVM algorithm for the classifiers in the face recogni-

tion. 

With MNMF, MNMF_FA and MNMF_SGR, after training process we compute 

the feature vector from the input test vector which is projected onto the basis matrix. 

After that, this feature vector is used in predicting class of face recognition.  

4.4 Experimental Results 

Classification Result for Face Recognition 

In this subsection, we evaluate the discriminating power of algorithm 

MNMF_SGR compared with the non-negative matrix factorization algorithms. Figure 
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2 shows the results of classification of NMF, SpaNMF, GNMF, MNMF, MNMF_FA 

and MNMF_SGR on the YaleA and ORL database. 

 

Fig. 2. Face recognition average accuracies (%) of different algorithms on (a) YaleA and (b) 

ORL datasets 

 

In this experiment, we fixed     ,        and different values of   on the 

YaleA and ORL databases. In both cases, values between 10
-2 

and 10
-1 

of    performs 

better than other values on accuracy rate of classification. We set k values (from 5 to 

30). The NMF variants achieved better classification accuracy than a basic NMF at 

each k values and comparing the second best algorithm, MNMF_SGR achieves 

2.36% and 1.51% improvement in accuracy on two datasets, respectively. 

Classification Results for Partially Occluded Images 

In this section, we present the classification results for the values {5%, 10%} of 

partial occlusion on the ORL and Yale-A datasets. We randomize the place of a par-

tial occlusion on all test images. All algorithms were trained and tested in the same 

way in section face recognition.  

 

Fig. 3. Sample of ORL test images with 5% partially occluded  

Figure 4 shows face recognition average accuracies under partial occlusion condi-

tion. We divided that the dataset into two parts, occluded partial on training set and 

without occluded partial on testing set and set default k at 30. For 5% partial occlu-

sion, the MNMF_SGR has the highest accuracy at 82.21% then, followed by MNMF, 

and the other four NMF variants. However, for 10% occlusion the order has been 

little change. The best one is GNMF method, then MNMF and followed by 

MNMF_SGR. GNMF outperforms MNMF_SGR by 4.06%. 
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Fig. 4. Face recognition average accuracies (%) with 5% and 10% partial occlusion of different 

algorithms in three case. (a) YaleA data set (b) ORL  dataset. 

5 Conclusion 

In this paper, our approach had been introduced in the context of face recognition. 

The results show that our proposed algorithm provides better facial representations 

and achieves higher recognition rates than standard non-negative matrix factorization 

and its variants. For future work more studying the convergence rate for proposed 

method and increasing the efficiency, they should be all in consideration. 

Reference 

1. W. Zhao and R. Chellappa, “Face recognition: A literature survey,” ACM Comput. Surv. 

Comput. Surv., vol. 35, no. 4, pp. 399–458, 2003. 

2. B. Fasel, J. Luettin, “Automatic facial expression analysis: a survey”, Pattern Recognition, 

36 (1) (2003), pp. 259-275. 

3. D. D. Lee and H. S. Seung, “Algorithms for non-negative matrix factorization”, Advances 

in Neural Information Processing System, 2000. 

4. W. S. Zheng, J. Lai, S. Liao, R. He, “Extracting non-negative basis images using pixel dis-

persion penalty”, Pattern Recognition, pp. 2912-2926, 2012. 

5. D. Cai, X. He, J. Han and T. Huang, “Graph regularized nonnegative matrix factorization 

for data representation”, IEEE Transactions on Pattern Analysis and Machine Intelligence, 

vol. 33(8), pp. 1548–1560, 2011. 

6. H. Kim and H. Park, “Sparse non-negative matrix factorization via alternating non-

negativity constrained least squares for microarray data analysis”. Bioinformatics, vol. 23, 

no. 12, pp. 1495-1502, 2007. 

7. B. G. Kumar, I. Kotsia and I. Patras, “Max-margin nonnegative matrix factorization”, Im-

age Vision Computing, pp. 279–291, 2012. 

8. D. Liu and X. Tan, “Max-margin non-negative matrix factorization with flexible spatial 

constraints based on factor analysis”, Frontiers of Computer Science, vol.10 (2), pp. 302-

316, 2016. 

9. L. Mai, “Joint Support Vector Machine with Constrained Nonnegative Matrix Factoriza-

tion and Its Applications”, Master Thesis, National Central University, July 2017. 

10. "The Database of Faces," AT&T Laboratories Cambridge, [Online]. Available: 

http://www.cl.cam.ac.uk/research/dtg/attarchive/facedatabase.html, 2002. 

11. Georghiades,  A.  "Yale  face  database."  Center  for  computational  Vision  and  Control  

at  Yale University, http://cvc.cs.yale.edu/cvc/projects/yalefaces/yalefaces.html (2002). 

http://www.cl.cam.ac.uk/research/dtg/attarchive/facedatabase.html

